Reference: Nurcholis M, et al. (2019) Functional analysis of Mig1 and Rag5 as expressional regulators in thermotolerant yeast Kluyveromyces marxianus. Appl Microbiol Biotechnol 103(1):395-410

Reference Help

Abstract


To analyze the glucose repression mechanism in the thermotolerant yeast Kluyveromyces marxianus, disrupted mutants of genes for MIG1 and Rag5 as orthologs of MIG1 and HXK2, respectively, in Saccharomyces cerevisiae were constructed, and their characteristics were compared with those of the corresponding mutants of S. cerevisiae. MIG1 mutants of both yeasts exhibited more resistance than the corresponding parental strains to 2-deoxyglucose (2-DOG). Histidine was found to be essential for the growth of Kmmig1, but not that of Kmrag5, suggesting that MIG1 is required for histidine biosynthesis in K. marxianus. Moreover, Kmrag5 and Schxk2 were more resistant than the corresponding MIG1 mutant to 2-DOG, and only the latter increased the utilization speed of sucrose in the presence of glucose. Kmrag5 exhibited very low activities for gluco-hexokinase and hexokinase and, unlike Schxk2, showed very slow growth and a low level of ethanol production in a glucose medium. Furthermore, Kmrag5, but not Kmmig1, exhibited high inulinase activity in a glucose medium and exhibited greatly delayed utilization of accumulated fructose in the medium containing both glucose and sucrose. Transcription analysis revealed that the expression levels of INU1 for inulinase and GLK1 for glucokinase in Kmrag5 were higher than those in the parental strain; the expression level of INU1 in Kmmig1 was higher, but the expression levels of RAG1 for a low-affinity glucose transporter in Kmmig1 and Kmrag5 were lower. These findings suggest that except for regulation of histidine biosynthesis, MIG1 and Rag5 of K. marxianus play similar roles in the regulation of gene expression and share some functions with MIG1 and HXK2, respectively, in S. cerevisiae.

Reference Type
Journal Article
Authors
Nurcholis M, Nitiyon S, Suprayogi, Rodrussamee N, Lertwattanasakul N, Limtong S, Kosaka T, Yamada M
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference