Reference: Dila G, et al. (2019) Evolutionary conservation and functional implications of circular code motifs in eukaryotic genomes. Biosystems 175:57-74

Reference Help

Abstract


A set X of 20 trinucleotides has been found to have the highest average occurrence in the reading frame, compared to the two shifted frames, of genes of bacteria, archaea, eukaryotes, plasmids and viruses (Michel, 2015, 2017; Arquès and Michel, 1996). This set X has an interesting mathematical property, since X is a maximal C3 self-complementary trinucleotide circular code (Arquès and Michel, 1996). Furthermore, any motif obtained from this circular code X has the capacity to retrieve, maintain and synchronize the reading frame in genes. In a recent study of the X motifs in the complete genome of the yeast, Saccharomyces cerevisiae, it was shown that they are significantly enriched in the reading frame of the genes (protein-coding regions) of the genome (Michel et al., 2017). It was suggested that these X motifs may be evolutionary relics of a primitive code originally used for gene translation. The aim of this paper is to address two questions: are X motifs conserved during evolution? and do they continue to play a functional role in the processes of genome decoding and protein production? In a large scale analysis involving complete genomes from four mammals and nine different yeast species, we highlight specific evolutionary pressures on the X motifs in the genes of all the genomes, and identify important new properties of X motif conservation at the level of the encoded amino acids. We then compare the occurrence of X motifs with existing experimental data concerning protein expression and protein production, and report a significant correlation between the number of X motifs in a gene and increased protein abundance. In a general way, this work suggests that motifs from circular codes, i.e. motifs having the property of reading frame retrieval, may represent functional elements located within the coding regions of extant genomes.

Reference Type
Journal Article
Authors
Dila G, Michel CJ, Poch O, Ripp R, Thompson JD
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference