Reference: Aponte-Ubillus JJ, et al. (2019) A rAAV2-producing yeast screening model to identify host proteins enhancing rAAV DNA replication and vector yield. Biotechnol Prog 35(1):e2725

Reference Help

Abstract


Recombinant adeno-associated viral vectors (rAAV) are promising therapies for genetic diseases. Although current platforms for recombinant vector production can generate drug material for pre-clinical and clinical studies, rAAV biomanufacturing will eventually face commercial supply challenges if per cell vector productivity and process scalability are not improved. Because considerable efforts have traditionally focused on optimizing rAAV plasmid design, herein we investigate the impact of host cell proteins on vector production to identify proteins that may enhance rAAV yield. Using a rAAV2-GFP-producing Saccharomyces cerevisiae model in combination with the yeast Tet Hughes Collection screening library, we identified 22 gene candidates that improved rAAV DNA replication (rAAV-GFP/18s rDNA ratio) and vector yield (benzonase-resistant rAAV DNA vector genome titer) as high as 6-fold and 15-fold relative to control, respectively. The candidate proteins participate in biological processes such as DNA replication, ribosome biogenesis, and RNA and protein processing. The best five candidates (PRE4, HEM4, TOP2, GPN3, and SDO1) were further screened by generating overexpression mutants in the YPH500 yeast strain. Subsequent clone evaluation was performed to confirm the rAAV-promoting activity of selected candidates under plate-based and bioreactor-controlled fermentation conditions. Digital droplet PCR analysis of cell lysate and AVB resin-purified material confirmed HEM4 and TOP2 overexpression mutants displayed the highest per cell total rAAV DNA productivity (1.6 and 1.7-fold increase over control, respectively) and per cell vector productivity (3 and 4-fold over control, respectively). This evaluation confirmed that overexpression of HEM4 and TOP2 proteins enhanced total and benzonase-resistant rAAV DNA yield. Further studies are needed to understand their mechanism of action and to assess their potential application in molecular strategies for rAAV production. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 35: e2725, 2019.

Reference Type
Journal Article
Authors
Aponte-Ubillus JJ, Barajas D, Peltier J, Bardliving C, Shamlou P, Gold D
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference