Reference: Chia SZ, et al. (2018) Knockout of the Hmt1p Arginine Methyltransferase in Saccharomyces cerevisiae Leads to the Dysregulation of Phosphate-associated Genes and Processes. Mol Cell Proteomics 17(12):2462-2479

Reference Help

Abstract


Hmt1p is the predominant arginine methyltransferase in Saccharomyces cerevisiae Its substrate proteins are involved in transcription, transcriptional regulation, nucleocytoplasmic transport and RNA splicing. Hmt1p-catalyzed methylation can also modulate protein-protein interactions. Hmt1p is conserved from unicellular eukaryotes through to mammals where its ortholog, PRMT1, is lethal upon knockout. In yeast, however, the effect of knockout on the transcriptome and proteome has not been described. Transcriptome analysis revealed downregulation of phosphate-responsive genes in hmt1Δ, including acid phosphatases PHO5, PHO11, and PHO12, phosphate transporters PHO84 and PHO89 and the vacuolar transporter chaperone VTC3 Analysis of the hmt1Δ proteome revealed decreased abundance of phosphate-associated proteins including phosphate transporter Pho84p, vacuolar alkaline phosphatase Pho8p, acid phosphatase Pho3p and subunits of the vacuolar transporter chaperone complex Vtc1p, Vtc3p and Vtc4p. Consistent with this, phosphate homeostasis was dysregulated in hmt1Δ cells, showing decreased extracellular phosphatase levels and decreased total Pi in phosphate-depleted medium. In vitro, we showed that transcription factor Pho4p can be methylated at Arg-241, which could explain phosphate dysregulation in hmt1Δ if interplay exists with phosphorylation at Ser-242 or Ser-243, or if Arg-241 methylation affects the capacity of Pho4p to homodimerize or interact with Pho2p. However, the Arg-241 methylation site was not validated in vivo and the localization of a Pho4p-GFP fusion in hmt1Δ was not different from wild type. To our knowledge, this is the first study to reveal an association between Hmt1p and phosphate homeostasis and one which suggests a regulatory link between S-adenosyl methionine and intracellular phosphate.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Chia SZ, Lai YW, Yagoub D, Lev S, Hamey JJ, Pang CNI, Desmarini D, Chen Z, Djordjevic JT, Erce MA, ... Show all
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference