Reference: Chreptowicz K, et al. (2018) Screening of yeasts for the production of 2-phenylethanol (rose aroma) in organic waste-based media. Lett Appl Microbiol 66(2):153-160

Reference Help

Abstract


Unlabelled: In this study, we isolated 28 yeast strains from samples of plant material and fermented food and evaluated the possibility of efficient production of 2-phenylethanol (2-PE) in the organic waste-based media supplemented with l-phenylalanine (l-Phe). We used whey, a by-product from milk processing, as a base for media, and either glucose or three by-products from sugar beet processing as a fermentable carbon source. Ten newly isolated yeast strains were capable of producing over 2 g l-1 2-PE through the l-Phe biotransformation in a batch mode in standard medium. Among them, we selected eight strains producing 2-PE in a range of 1·17-3·28 g l-1 in 72 h batch cultures in shaking flasks in whey-based media. The strains were assigned to five species of Meyerozyma caribbica, Metschnikowia chrysoperlae, Meyerozyma guilliermondii, Pichia fermentans and Saccharomyces cerevisiae. While S. cerevisiae is known to be a promising producer of 2-PE, the four latter species are poorly studied on this application. Results presented here are better than other reported values for batch cultures of unmodified yeast strains. Therefore, it seems that whey and by-products from sugar beet processing might be a good feedstock for 2-PE bioproduction.

Significance and impact of the study: 2-Phenylethanol (2-PE) is an alcohol with a pleasant rosy scent, which is commonly used in the food, fragrance and cosmetic industries as an aroma compound and preservative. Promising sources of 2-PE are yeasts, but still the biotechnological route has not been economically competitive to chemical synthesis. Thus, the first challenging goal to develop biotechnological production of 2-PE is the identification of highly productive yeasts and cheap feedstock. This study demonstrates for the first time the promising production of 2-PE by selected yeasts in organic waste-based media. This could pave the way for development of a cheaper method of 2-PE bioproduction.

Reference Type
Journal Article
Authors
Chreptowicz K, Sternicka MK, Kowalska PD, Mierzejewska J
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference