Reference: Bakker E, et al. (2018) Morphologically constrained and data informed cell segmentation of budding yeast. Bioinformatics 34(1):88-96

Reference Help

Abstract


Motivation: Although high-content image cytometry is becoming increasingly routine, processing the large amount of data acquired during time-lapse experiments remains a challenge. The majority of approaches for automated single-cell segmentation focus on flat, uniform fields of view covered with a single layer of cells. In the increasingly popular microfluidic devices that trap individual cells for long term imaging, these conditions are not met. Consequently, most techniques for segmentation perform poorly. Although potentially constraining the generalizability of software, incorporating information about the microfluidic features, flow of media and the morphology of the cells can substantially improve performance.

Results: Here we present DISCO (Data Informed Segmentation of Cell Objects), a framework for using the physical constraints imposed by microfluidic traps, the shape based morphological constraints of budding yeast and temporal information about cell growth and motion to allow tracking and segmentation of cells in microfluidic devices. Using manually curated datasets, we demonstrate substantial improvements in both tracking and segmentation when compared with existing software.

Availability and implementation: The MATLAB code for the algorithm and for measuring performance is available at https://github.com/pswain/segmentation-software and the test images and the curated ground-truth results used for comparing the algorithms are available at http://datashare.is.ed.ac.uk/handle/10283/2002.

Contact: mcrane2@uw.edu.

Supplementary information: Supplementary data are available at Bioinformatics online.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Bakker E, Swain PS, Crane MM
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference