Reference: Liu Y, et al. (2017) Mistakes in translation: Reflections on mechanism. PLoS One 12(6):e0180566

Reference Help

Abstract


Mistakes in translation of messenger RNA into protein are clearly a detriment to the recombinant production of pure proteins for biophysical study or the biopharmaceutical market. However, they may also provide insight into mechanistic details of the translation process. Mistakes often involve the substitution of an amino acid having an abundant codon for one having a rare codon, differing by substitution of a G base by an A base, as in the case of substitution of a lysine (AAA) for arginine (AGA). In these cases one expects the substitution frequency to depend on the relative abundances of the respective tRNAs, and thus, one might expect frequencies to be similar for all sites having the same rare codon. Here we demonstrate that, for the ADP-ribosylation factor from yeast expressed in E. coli, lysine for arginine substitutions frequencies are not the same at the 9 sites containing a rare arginine codon; mis-incorporation frequencies instead vary from less than 1 to 16%. We suggest that the context in which the codons occur (clustering of rare sites) may be responsible for the variation. The method employed to determine the frequency of mis-incorporation involves a novel mass spectrometric analysis of the products from the parallel expression of wild type and codon-optimized genes in 15N and 14N enriched media, respectively. The high sensitivity and low material requirements of the method make this a promising technology for the collection of data relevant to other mis-incorporations. The additional data could be of value in refining models for the ribosomal translation elongation process.

Reference Type
Journal Article
Authors
Liu Y, Sharp JS, Do DH, Kahn RA, Schwalbe H, Buhr F, Prestegard JH
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference