Reference: Henriques SF, et al. (2017) Genome-wide search for candidate genes for yeast robustness improvement against formic acid reveals novel susceptibility (Trk1 and positive regulators) and resistance (Haa1-regulon) determinants. Biotechnol Biofuels 10:96

Reference Help

Abstract


Background: Formic acid is an inhibitory compound present in lignocellulosic hydrolysates. Understanding the complex molecular mechanisms underlying Saccharomyces cerevisiae tolerance to this weak acid at the system level is instrumental to guide synthetic pathway engineering for robustness improvement of industrial strains envisaging their use in lignocellulosic biorefineries.

Results: This study was performed to identify, at a genome-wide scale, genes whose expression confers protection or susceptibility to formic acid, based on the screening of a haploid deletion mutant collection to search for these phenotypes in the presence of 60, 70 and 80 mM of this acid, at pH 4.5. This chemogenomic analysis allowed the identification of 172 determinants of tolerance and 41 determinants of susceptibility to formic acid. Clustering of genes required for maximal tolerance to this weak acid, based on their biological function, indicates an enrichment of those involved in intracellular trafficking and protein synthesis, cell wall and cytoskeleton organization, carbohydrate metabolism, lipid, amino acid and vitamin metabolism, response to stress, chromatin remodelling, transcription and internal pH homeostasis. Among these genes is HAA1 encoding the main transcriptional regulator of yeast transcriptome reprograming in response to acetic acid and genes of the Haa1-regulon; all demonstrated determinants of acetic acid tolerance. Among the genes that when deleted lead to increased tolerance to formic acid, TRK1, encoding the high-affinity potassium transporter and a determinant of resistance to acetic acid, was surprisingly found. Consistently, genes encoding positive regulators of Trk1 activity were also identified as formic acid susceptibility determinants, while a negative regulator confers protection. At a saturating K+ concentration of 20 mM, the deletion mutant trk1Δ was found to exhibit a much higher tolerance compared with the parental strain. Given that trk1Δ accumulates lower levels of radiolabelled formic acid, compared to the parental strain, it is hypothesized that Trk1 facilitates formic acid uptake into the yeast cell.

Conclusions: The list of genes resulting from this study shows a few marked differences from the list of genes conferring protection to acetic acid and provides potentially valuable information to guide improvement programmes for the development of more robust strains against formic acid.

Reference Type
Journal Article
Authors
Henriques SF, Mira NP, Sá-Correia I
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference