Reference: Teixeira D, et al. (2017) Development of a new HPLC-based method for 3-nitrotyrosine quantification in different biological matrices. J Chromatogr B Analyt Technol Biomed Life Sci 1046:48-57

Reference Help

Abstract


Background: The nitration of tyrosine residues in proteins is associated with nitrosative stress, resulting in the formation of 3-nitrotyrosine (3-NT).1 3-NT levels in biological samples have been associated with numerous physiological and pathological conditions. Hence several attempts have been made in order to develop methods that accurately quantify 3-NT in these matrices. The aim of this study was to develop a simple, rapid, low-cost and sensitive high-performance liquid chromatography (HPLC)-based 3-NT quantification method.

Methods: All experiments were performed on an Hitachi LaChrom Elite® HPLC system. The method was validated according to International Conference on Harmonisation (ICH) guidelines for serum samples. Additionally, other biological matrices were tested, namely whole blood, urine, B16 F-10 melanoma cell line, growth medium conditioned with the same cell line, bacterial and yeast suspensions.

Results: From all the protocols tested, the best results were obtained using 0.5% CH3COOH:MeOH:H2O (15:15:70) as mobile phase, with detection at wavelengths 215, 276 and 356nm, at 25°C, and using a flow rate of 1mLmin-1. By using this protocol, it was possible to obtain a linear calibration curve, limits of detection and quantification in the order of μgL-1, and a short analysis time (<15min per sample). The developed protocol allowed the successful detection and quantification of 3-NT in all biological matrices tested, with detection at 356nm.

Conclusion: This method, successfully developed and validated for 3-NT quantification, is simple, cheap and fast. These features render this method a suitable option for analysis of a wide range of biological matrices, being a promising useful tool for both research and diagnosis activities.

Reference Type
Journal Article
Authors
Teixeira D, Prudêncio C, Vieira M
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference