Reference: Dayan IE, et al. (2017) Multiomics Approach to Novel Therapeutic Targets for Cancer and Aging-Related Diseases: Role of Sld7 in Yeast Aging Network. OMICS 21(2):100-113

Reference Help

Abstract


Genome instability has long been implicated as a salient causal factor in aging and age-related diseases such as cancer and neurodegeneration. However, the molecular mechanisms associated with genome instability remain unclear. Recent studies suggest growth signaling in the organism Saccharomyces cerevisiae and in higher eukaryotes might affect oxidative stress and aging/age-related diseases by activating DNA replication stress that causes DNA damage. In this broader integrative biology and clinical context, MDM two binding protein (MTBP) is a binding protein that has a role in activation of the tumor suppressor protein p53. Clinical studies suggest that the increase in expression of MTBP leads to reduction in survival of breast cancer patients. The functional homolog of MTBP in yeast, Sld7, is a hitherto uncharacterized protein that decreases the affinity of Sld3 (Treslin/Ticrr in humans) toward Cdc45 in the cell cycle process of S. cerevisiae. To investigate the putative function of Sld7 in chronological aging and replicative life span, we applied a network biology approach, integrating interactome and transcriptome data of budding yeast. The cell cycle and chronological aging networks of proteins in budding yeast were reconstructed. Furthermore, through meta-analysis of cell cycle and chronological aging-associated transcriptome datasets, we constructed coexpression networks and identified coexpressed gene clusters. In this study, we propose a dual role for Sld7: it participates in macromolecular complex binding in the cell cycle and has oxidoreductase activity in chronological aging in budding yeast. These potential roles of Sld7 in yeast can offer new insights on the role of MTBP in humans and consequently might lead to novel strategies for treatment of cancers and aging-related diseases.

Reference Type
Journal Article
Authors
Dayan IE, Arga KY, Ulgen KO
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference