Reference: Peláez-Soto A, et al. (2017) Evaluation of the Ability of Polyphenol Extracts of Cocoa and Red Grape to Promote the Antioxidant Response in Yeast Using a Rapid Multiwell Assay. J Food Sci 82(2):324-332

Reference Help

Abstract


Saccharomyces cerevisiae has been used as a model organism to study the capacity of cocoa and red grape extracts to trigger an antioxidant response. A methodology adapted to microtiter plates has been developed to monitor yeast growth after culture preincubation with food ingredients and exposure to oxidative stress by hydrogen peroxide and menadione. This methodology proved effective in measuring the ability of cocoa and red grape extracts to promote an antioxidant response in yeast, and also the prospect of conducting dose-response studies. Additionally, the method has proven useful to perform studies with mutant strains lacking genes that may be related to the mechanism of action underlying the antioxidant properties. Thus, in a single assay, it is possible to elucidate the sensitivity of strains to oxidative stress, the ability of an ingredient to promote an antioxidant response, and the possible implication of certain genes. Results of assays using strain hst3Δ showed that the antioxidant protection provided by exposure to cocoa and red grape extracts was not present in the strain lacking gene HST3 when H2 O2 and menadione were used as oxidizing agents. This effect was previously reported for cocoa extract only, with H2 O2 as stressor. Moreover, the results showed that the mutant strain hst3Δ is more resistant to menadione and H2 O2 in the absence of preincubation with cocoa and red grape extract, hinting at the possible implication of sirtuin Hst3 in the antioxidant cellular response.

Reference Type
Journal Article
Authors
Peláez-Soto A, Fernández-Espinar MT, Roig P, Gil JV
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference