Reference: Schwer B, et al. (2017) Will the circle be unbroken: specific mutations in the yeast Sm protein ring expose a requirement for assembly factor Brr1, a homolog of Gemin2. RNA 23(3):420-430

Reference Help

Abstract


A seven-subunit Sm protein ring assembles around specific U-rich RNA segments of the U1, U2, U4, and U5 snRNPs that direct pre-mRNA splicing. Using human snRNP crystal structures to guide mutagenesis in Saccharomyces cerevisiae, we gained new insights into structure-function relationships of the SmD1 and SmD2 subunits. Of 18 conserved amino acids comprising their RNA-binding sites or intersubunit interfaces, only Arg88 in SmD1 and Arg97 in SmD2 were essential for growth. Tests for genetic interactions with non-Sm splicing factors identified benign mutations of SmD1 (N37A, R88K, R93A) and SmD2 (R49A, N66A, R97K, D99A) that were synthetically lethal with null alleles of U2 snRNP subunits Lea1 and/or Msl1. Tests of 264 pairwise combinations of SmD1 and SmD2 alleles with each other and with a collection of SmG, SmE, SmF, SmB, and SmD3 alleles revealed 92 instances of inter-Sm synthetic lethality. We leveraged the Sm mutant collection to illuminate the function of the yeast Sm assembly factor Brr1 and its relationship to the metazoan Sm assembly factor Gemin2. Mutations in the adjacent SmE (K83A), SmF (K32A, F33A, R74K), SmD2 (R49A, N66A, E74A, R97K, D99A), and SmD1 (E18A, N37A) subunits-but none in the SmG, SmD3, and SmB subunits-were synthetically lethal with brr1Δ. Using complementation of brr1Δ lethality in two Sm mutant backgrounds as an in vivo assay of Brr1 activity, we identified as essential an N-terminal segment of Brr1 (amino acids 24-47) corresponding to the Gemin2 α1 helix that interacts with SmF and a Brr1 C-terminal peptide (336QKDLIE341) that, in Gemin2, interacts with SmD2.

Reference Type
Journal Article
Authors
Schwer B, Roth AJ, Shuman S
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference