Reference: Wang Q and Donze D (2016) Transcription factor Reb1 is required for proper transcriptional start site usage at the divergently transcribed TFC6-ESC2 locus in Saccharomyces cerevisiae. Gene 594(1):108-116

Reference Help

Abstract


Eukaryotic promoters generally contain nucleosome depleted regions near their transcription start sites. In the model organism Saccharomyces cerevisiae, these regions are adjacent to binding sites for general regulatory transcription factors, and the Reb1 protein is commonly bound to promoter DNA near such regions. The yeast TFC6 promoter is a unique RNA polymerase II promoter in that it is autoregulated by its own gene product Tfc6p, which is part of the RNA polymerase III transcription factor complex TFIIIC. We previously demonstrated that mutation of a potential Reb1 binding site adjacent to the TFIIIC binding site in the TFC6 promoter modestly reduces transcript levels, but leads to a severe decrease in Tfc6 protein levels due to an upstream shift in the TFC6 transcription start site. Here we confirm that Reb1p indeed binds to the TFC6 promoter, and is important for proper transcription start site selection and protein expression. Interestingly, loss of Reb1p association at this site has a similar effect on the adjacent divergently transcribed ESC2 promoter, resulting in a significant increase of 5'-extended ESC2 transcripts and reduction of Esc2 protein levels. This altered divergent transcription may be the result of changes in nucleosome positioning at this locus in the absence of Reb1p binding. We speculate that an important function of general regulatory factors such as Reb1p is to establish and maintain proper transcription start sites at promoters, and that when binding of such factors is compromised, resulting effects on mRNA translation may be an underappreciated aspect of gene regulation studies.

Reference Type
Journal Article
Authors
Wang Q, Donze D
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference