Reference: Li G, et al. (2016) Predicting essential proteins based on subcellular localization, orthology and PPI networks. BMC Bioinformatics 17 Suppl 8(Suppl 8):279

Reference Help

Abstract


Background: Essential proteins play an indispensable role in the cellular survival and development. There have been a series of biological experimental methods for finding essential proteins; however they are time-consuming, expensive and inefficient. In order to overcome the shortcomings of biological experimental methods, many computational methods have been proposed to predict essential proteins. The computational methods can be roughly divided into two categories, the topology-based methods and the sequence-based ones. The former use the topological features of protein-protein interaction (PPI) networks while the latter use the sequence features of proteins to predict essential proteins. Nevertheless, it is still challenging to improve the prediction accuracy of the computational methods.

Results: Comparing with nonessential proteins, essential proteins appear more frequently in certain subcellular locations and their evolution more conservative. By integrating the information of subcellular localization, orthologous proteins and PPI networks, we propose a novel essential protein prediction method, named SON, in this study. The experimental results on S.cerevisiae data show that the prediction accuracy of SON clearly exceeds that of nine competing methods: DC, BC, IC, CC, SC, EC, NC, PeC and ION.

Conclusions: We demonstrate that, by integrating the information of subcellular localization, orthologous proteins with PPI networks, the accuracy of predicting essential proteins can be improved. Our proposed method SON is effective for predicting essential proteins.

Reference Type
Journal Article
Authors
Li G, Li M, Wang J, Wu J, Wu FX, Pan Y
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference