Reference: Suástegui M, et al. (2016) Investigating strain dependency in the production of aromatic compounds in Saccharomyces cerevisiae. Biotechnol Bioeng 113(12):2676-2685

Reference Help

Abstract


Although Saccharomyces cerevisiae is the most highly domesticated yeast, strain dependency in biotechnological processes still remains as a common, yet poorly understood phenomenon. To investigate this, the entrance to the aromatic amino acid biosynthetic pathway was compared in four commonly used S. cerevisiae laboratory strains. The strains were engineered to accumulate shikimate by overexpressing a mutant version of the pentafunctional ARO1 enzyme with disrupted activity in the shikimate kinase subunit. Carbon tracing and 13 C metabolic flux analysis combined with quantitative PCR, revealed that precursor availability and shikimate production were dramatically different in the four equally engineered strains, which were found to be correlated with the strains' capacity to deal with protein overexpression burden. By implementing a strain-dependent approach, the genetic platform was reformulated, leading to an increase in yield and titer in all strains. The highest producing strain, INVSc1-SA3, produced 358 mg L-1 of shikimate with a yield of 17.9 mg g-1glucose. These results underline the importance of strain selection in developing biological manufacturing processes, demonstrate the first case of high production of shikimate in yeast, and provide an appropriate platform for strain selection for future production of aromatic compounds. Biotechnol. Bioeng. 2016;113: 2676-2685. © 2016 Wiley Periodicals, Inc.

Reference Type
Journal Article
Authors
Suástegui M, Guo W, Feng X, Shao Z
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference