Reference: Guo J, et al. (2016) SynLethDB: synthetic lethality database toward discovery of selective and sensitive anticancer drug targets. Nucleic Acids Res 44(D1):D1011-7

Reference Help

Abstract


Synthetic lethality (SL) is a type of genetic interaction between two genes such that simultaneous perturbations of the two genes result in cell death or a dramatic decrease of cell viability, while a perturbation of either gene alone is not lethal. SL reflects the biologically endogenous difference between cancer cells and normal cells, and thus the inhibition of SL partners of genes with cancer-specific mutations could selectively kill cancer cells but spare normal cells. Therefore, SL is emerging as a promising anticancer strategy that could potentially overcome the drawbacks of traditional chemotherapies by reducing severe side effects. Researchers have developed experimental technologies and computational prediction methods to identify SL gene pairs on human and a few model species. However, there has not been a comprehensive database dedicated to collecting SL pairs and related knowledge. In this paper, we propose a comprehensive database, SynLethDB (http://histone.sce.ntu.edu.sg/SynLethDB/), which contains SL pairs collected from biochemical assays, other related databases, computational predictions and text mining results on human and four model species, i.e. mouse, fruit fly, worm and yeast. For each SL pair, a confidence score was calculated by integrating individual scores derived from different evidence sources. We also developed a statistical analysis module to estimate the druggability and sensitivity of cancer cells upon drug treatments targeting human SL partners, based on large-scale genomic data, gene expression profiles and drug sensitivity profiles on more than 1000 cancer cell lines. To help users access and mine the wealth of the data, we developed other practical functionalities, such as search and filtering, orthology search, gene set enrichment analysis. Furthermore, a user-friendly web interface has been implemented to facilitate data analysis and interpretation. With the integrated data sets and analytics functionalities, SynLethDB would be a useful resource for biomedical research community and pharmaceutical industry.

Reference Type
Journal Article | Research Support, N.I.H., Extramural | Research Support, Non-U.S. Gov't
Authors
Guo J, Liu H, Zheng J
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference