Reference: Tang X, et al. (2014) Predicting Essential Proteins Based on Weighted Degree Centrality. IEEE/ACM Trans Comput Biol Bioinform 11(2):407-18

Reference Help

Abstract


Essential proteins are vital for an organism's viability under a variety of conditions. There are many experimental and computational methods developed to identify essential proteins. Computational prediction of essential proteins based on the global protein-protein interaction (PPI) network is severely restricted because of the insufficiency of the PPI data, but fortunately the gene expression profiles help to make up the deficiency. In this work, Pearson correlation coefficient (PCC) is used to bridge the gap between PPI and gene expression data. Based on PCC and edge clustering coefficient (ECC), a new centrality measure, i.e., the weighted degree centrality (WDC), is developed to achieve the reliable prediction of essential proteins. WDC is employed to identify essential proteins in the yeast PPI and e-Coli networks in order to estimate its performance. For comparison, other prediction technologies are also performed to identify essential proteins. Some evaluation methods are used to analyze the results from various prediction approaches. The prediction results and comparative analyses are shown in the paper. Furthermore, the parameter λ in the method WDC will be analyzed in detail and an optimal λ value will be found. Based on the optimal λ value, the differentiation of WDC and another prediction method PeC is discussed. The analyses prove that WDC outperforms other methods including DC, BC, CC, SC, EC, IC, NC, and PeC. At the same time, the analyses also mean that it is an effective way to predict essential proteins by means of integrating different data sources.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Tang X, Wang J, Zhong J, Pan Y
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference