Reference: Sparks JL and Burgers PM (2015) Error-free and mutagenic processing of topoisomerase 1-provoked damage at genomic ribonucleotides. EMBO J 34(9):1259-69

Reference Help

Abstract


Genomic ribonucleotides incorporated during DNA replication are commonly repaired by RNase H2-dependent ribonucleotide excision repair (RER). When RNase H2 is compromised, such as in Aicardi-Goutières patients, genomic ribonucleotides either persist or are processed by DNA topoisomerase 1 (Top1) by either error-free or mutagenic repair. Here, we present a biochemical analysis of these pathways. Top1 cleavage at genomic ribonucleotides can produce ribonucleoside-2',3'-cyclic phosphate-terminated nicks. Remarkably, this nick is rapidly reverted by Top1, thereby providing another opportunity for repair by RER. However, the 2',3'-cyclic phosphate-terminated nick is also processed by Top1 incision, generally 2 nucleotides upstream of the nick, which produces a covalent Top1-DNA complex with a 2-nucleotide gap. We show that these covalent complexes can be processed by proteolysis, followed by removal of the phospho-peptide by Tdp1 and the 3'-phosphate by Tpp1 to mediate error-free repair. However, when the 2-nucleotide gap is associated with a dinucleotide repeat sequence, sequence slippage re-alignment followed by Top1-mediated religation can occur which results in 2-nucleotide deletion. The efficiency of deletion formation shows strong sequence-context dependence.

Reference Type
Journal Article | Research Support, N.I.H., Extramural
Authors
Sparks JL, Burgers PM
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference