Reference: Johnson P, et al. (2015) A systematic mutational analysis of a histone H3 residue in budding yeast provides insights into chromatin dynamics. G3 (Bethesda) 5(5):741-9

Reference Help

Abstract


In previous work using the Saccharomyces cerevisiae model system, a mutant version of histone H3-H3-L61W-was found to confer a variety of abnormal growth phenotypes and defects in specific aspects of the transcription process, including a pronounced alteration in the distribution pattern of the transcription elongation factor Spt16 across transcribed genes and promotion of cryptic transcription initiation within the FLO8 gene. To gain insights into the contribution of the H3-L61 residue to chromatin function, we have generated yeast strains expressing versions of histone H3 harboring all possible natural amino acid substitutions at position 61 (H3-L61X mutants) and tested them in a series of assays. We found that whereas 16 of the 19 H3-L61X mutants support viability when expressed as the sole source of histone H3 in cells, all 19 confer abnormal phenotypes ranging from very mild to severe, a finding that might in part explain the high degree of conservation of the H3-L61 residue among eukaryotes. An examination of the strength of the defects conferred by each H3-L61X mutant and the nature of the corresponding substituted residue provides insights into structural features of the nucleosome required for proper Spt16-gene interactions and for prevention of cryptic transcription initiation events. Finally, we provide evidence that the defects imparted by H3-L61X mutants on Spt16-gene interactions and on repression of intragenic transcription initiation are mechanistically related to each other.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Johnson P, Mitchell V, McClure K, Kellems M, Marshall S, Allison MK, Lindley H, Nguyen HT, Tackett JE, Duina AA
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference