Reference: Godin SK, et al. (2015) Evolutionary and functional analysis of the invariant SWIM domain in the conserved Shu2/SWS1 protein family from Saccharomyces cerevisiae to Homo sapiens. Genetics 199(4):1023-33

Reference Help

Abstract


The Saccharomyces cerevisiae Shu2 protein is an important regulator of Rad51, which promotes homologous recombination (HR). Shu2 functions in the Shu complex with Shu1 and the Rad51 paralogs Csm2 and Psy3. Shu2 belongs to the SWS1 protein family, which is characterized by its SWIM domain (CXC...Xn...CXH), a zinc-binding motif. In humans, SWS1 interacts with the Rad51 paralog SWSAP1. Using genetic and evolutionary analyses, we examined the role of the Shu complex in mitotic and meiotic processes across eukaryotic lineages. We provide evidence that the SWS1 protein family contains orthologous genes in early-branching eukaryote lineages (e.g., Giardia lamblia), as well as in multicellular eukaryotes including Caenorhabditis elegans and Drosophila melanogaster. Using sequence analysis, we expanded the SWIM domain to include an invariant alanine three residues after the terminal CXH motif (CXC…Xn…CXHXXA). We found that the SWIM domain is conserved in all eukaryotic orthologs, and accordingly, in vivo disruption of the invariant residues within the canonical SWIM domain inhibits DNA damage tolerance in yeast and protein-protein interactions in yeast and humans. Furthermore, using evolutionary analyses, we found that yeast and Drosophila Shu2 exhibit strong coevolutionary signatures with meiotic proteins, and in yeast, its disruption leads to decreased meiotic progeny. Together our data indicate that the SWS1 family is an ancient and highly conserved eukaryotic regulator of meiotic and mitotic HR.

Reference Type
Journal Article | Research Support, N.I.H., Extramural | Research Support, Non-U.S. Gov't
Authors
Godin SK, Meslin C, Kabbinavar F, Bratton-Palmer DS, Hornack C, Mihalevic MJ, Yoshida K, Sullivan M, Clark NL, Bernstein KA
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference