Reference: Leber C, et al. (2015) Overproduction and secretion of free fatty acids through disrupted neutral lipid recycle in Saccharomyces cerevisiae. Metab Eng 28:54-62

Reference Help

Abstract


The production of fuels and chemicals from biorenewable resources is important to alleviate the environmental concerns, costs, and foreign dependency associated with the use of petroleum feedstock. Fatty acids are attractive biomolecules due to the flexibility of their iterative biosynthetic pathway, high energy content, and suitability for conversion into other secondary chemicals. Free fatty acids (FFAs) that can be secreted from the cell are particularly appealing due to their lower harvest costs and straightforward conversion into a broad range of biofuel and biochemical products. Saccharomyces cerevisiae was engineered to overproduce extracellular FFAs by targeting three native intracellular processes. β-oxidation was disrupted by gene knockouts in FAA2, PXA1 and POX1, increasing intracellular fatty acids levels up to 55%. Disruptions in the acyl-CoA synthetase genes FAA1, FAA4 and FAT1 allowed the extracellular detection of free fatty acids up to 490mg/L. Combining these two disrupted pathways, a sextuple mutant (Δfaa1 Δfaa4 Δfat1 Δfaa2 Δpxa1 Δpox1) was able to produce 1.3g/L extracellular free fatty acids. Further diversion of carbon flux into neutral lipid droplet formation was investigated by the overexpression of DGA1 or ARE1 and by the co-overexpression of a compatible lipase, TGL1, TGL3 or TGL5. The sextuple mutant overexpressing the diacylglycerol acyltransferase, DGA1, and the triacylglycerol lipase, TGL3, yielded 2.2g/L extracellular free fatty acids. This novel combination of pathway interventions led to 4.2-fold higher extracellular free fatty acid levels than previously reported for S. cerevisiae.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, Non-P.H.S.
Authors
Leber C, Polson B, Fernandez-Moya R, Da Silva NA
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference