Reference: Goyal VD, et al. (2014) Crystallization and preliminary X-ray crystallographic analysis of an artificial molten-globular-like triosephosphate isomerase protein of mixed phylogenetic origin. Acta Crystallogr F Struct Biol Commun 70(Pt 11):1521-5

Reference Help

Abstract


A bioinformatics-based protein-engineering approach called consensus design led to the construction of a chimeric triosephosphate isomerase (TIM) protein called ccTIM (curated consensus TIM) which is as active as Saccharomyces cerevisiae TIM despite sharing only 58% sequence identity with it. The amino-acid sequence of this novel protein is as identical to native sequences from eukaryotes as to those from prokaryotes and shares some biophysical traits with a molten globular protein. Solving its crystal structure would help in understanding the physical implications of its bioinformatics-based sequence. In this report, the ccTIM protein was successfully crystallized using the microbatch-under-oil method and a full X-ray diffraction data set was collected to 2.2 Å resolution using a synchrotron-radiation source. The crystals belonged to space group C2221, with unit-cell parameters a=107.97, b=187.21, c=288.22 Å. Matthews coefficient calculations indicated the presence of six dimers in the asymmetric unit, with an approximate solvent content of 46.2%.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Goyal VD, Yadav P, Kumar A, Ghosh B, Makde RD
Primary Lit For
Additional Lit For
Review For