Reference: Jazwinski SM (2014) The retrograde response: a conserved compensatory reaction to damage from within and from without. Prog Mol Biol Transl Sci 127:133-54

Reference Help

Abstract


The retrograde response was discovered in Saccharomyces cerevisiae as a signaling pathway from the mitochondrion to the nucleus that triggers an array of gene regulatory changes in the latter. The activation of the retrograde response compensates for the deficits associated with aging, and thus it extends yeast replicative life span. The retrograde response is activated by the progressive decline in mitochondrial membrane potential during aging that is the result of increasing mitochondrial dysfunction. The ensuing metabolic adaptations and stress resistance can only delay the inevitable demise of the yeast cell. The retrograde response is embedded in a network of signal transduction pathways that impinge upon virtually every aspect of cell physiology. Thus, its manifestations are complicated. Many of these pathways have been implicated in life span regulation quite independently of the retrograde response. Together, they operate in a delicate balance in promoting longevity. The retrograde response is closely aligned with cell quality control, often performing when quality control is not sufficient to assure longevity. Among the key pathways related to this aspect of retrograde signaling are target of rapamycin and ceramide signaling. The retrograde response can also be found in other organisms, including Caenorhabditis elegans, Drosophila melanogaster, mouse, and human, where it exhibits an ever-increasing complexity that may be corralled by the transcription factor NFκB. The retrograde response may have evolved as a cytoprotective mechanism that senses and defends the organism from pathogens and environmental toxins.

Reference Type
Journal Article | Research Support, N.I.H., Extramural | Review
Authors
Jazwinski SM
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference