Reference: Riekhof WR, et al. (2014) Phosphate starvation in fungi induces the replacement of phosphatidylcholine with the phosphorus-free betaine lipid diacylglyceryl-N,N,N-trimethylhomoserine. Eukaryot Cell 13(6):749-57

Reference Help

Abstract


Diacylglyceryl-N,N,N-trimethylhomoserine (DGTS) is a phosphorus-free betaine-lipid analog of phosphatidylcholine (PtdCho) synthesized by many soil bacteria, algae, and nonvascular plants. Synthesis of DGTS and other phosphorus-free lipids in bacteria occurs in response to phosphorus (P) deprivation and results in the replacement of phospholipids by nonphosphorous lipids. The genes encoding DGTS biosynthetic enzymes have previously been identified and characterized in bacteria and the alga Chlamydomonas reinhardtii. We now report that many fungal genomes, including those of plant and animal pathogens, encode the enzymatic machinery for DGTS biosynthesis, and that fungi synthesize DGTS during P limitation. This finding demonstrates that replacement of phospholipids by nonphosphorous lipids is a strategy used in divergent eukaryotic lineages for the conservation of P under P-limiting conditions. Mutants of Neurospora crassa were used to show that DGTS synthase encoded by the BTA1 gene is solely responsible for DGTS biosynthesis and is under the control of the fungal phosphorus deprivation regulon, mediated by the NUC-1/Pho4p transcription factor. Furthermore, we describe the rational reengineering of lipid metabolism in the yeast Saccharomyces cerevisiae, such that PtdCho is completely replaced by DGTS, and demonstrate that essential processes of membrane biogenesis and organelle assembly are functional and support growth in the engineered strain.

Reference Type
Journal Article | Research Support, N.I.H., Extramural | Research Support, U.S. Gov't, Non-P.H.S.
Authors
Riekhof WR, Naik S, Bertrand H, Benning C, Voelker DR
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference