Reference: Liu W, et al. (2014) Extracting rate changes in transcriptional regulation from MEDLINE abstracts. BMC Bioinformatics 15 Suppl 2(Suppl 2):S4

Reference Help

Abstract


Background: Time delays are important factors that are often neglected in gene regulatory network (GRN) inference models. Validating time delays from knowledge bases is a challenge since the vast majority of biological databases do not record temporal information of gene regulations. Biological knowledge and facts on gene regulations are typically extracted from bio-literature with specialized methods that depend on the regulation task. In this paper, we mine evidences for time delays related to the transcriptional regulation of yeast from the PubMed abstracts.

Results: Since the vast majority of abstracts lack quantitative time information, we can only collect qualitative evidences of time delays. Specifically, the speed-up or delay in transcriptional regulation rate can provide evidences for time delays (shorter or longer) in GRN. Thus, we focus on deriving events related to rate changes in transcriptional regulation. A corpus of yeast regulation related abstracts was manually labeled with such events. In order to capture these events automatically, we create an ontology of sub-processes that are likely to result in transcription rate changes by combining textual patterns and biological knowledge. We also propose effective feature extraction methods based on the created ontology to identify the direct evidences with specific details of these events. Our ontologies outperform existing state-of-the-art gene regulation ontologies in the automatic rule learning method applied to our corpus. The proposed deterministic ontology rule-based method can achieve comparable performance to the automatic rule learning method based on decision trees. This demonstrates the effectiveness of our ontology in identifying rate-changing events. We also tested the effectiveness of the proposed feature mining methods on detecting direct evidence of events. Experimental results show that the machine learning method on these features achieves an F1-score of 71.43%.

Conclusions: The manually labeled corpus of events relating to rate changes in transcriptional regulation for yeast is available in https://sites.google.com/site/wentingntu/data. The created ontologies summarized both biological causes of rate changes in transcriptional regulation and corresponding positive and negative textual patterns from the corpus. They are demonstrated to be effective in identifying rate-changing events, which shows the benefits of combining textual patterns and biological knowledge on extracting complex biological events.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Liu W, Miao K, Li G, Chang K, Zheng J, Rajapakse JC
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference