Reference: Armengaud J, et al. (2014) Non-model organisms, a species endangered by proteogenomics. J Proteomics 105:5-18

Reference Help

Abstract


Unlabelled: Previously, large-scale proteomics was possible only for organisms whose genomes were sequenced, meaning the most common model organisms. The use of next-generation sequencers is now changing the deal. With "proteogenomics", the use of experimental proteomics data to refine genome annotations, a higher integration of omics data is gaining ground. By extension, combining genomic and proteomic data is becoming routine in many research projects. "Proteogenomic"-flavored approaches are currently expanding, enabling the molecular studies of non-model organisms at an unprecedented depth. Today draft genomes can be obtained using next-generation sequencers in a rather straightforward way and at a reasonable cost for any organism. Unfinished genome sequences can be used to interpret tandem mass spectrometry proteomics data without the need for time-consuming genome annotation, and the use of RNA-seq to establish nucleotide sequences that are directly translated into protein sequences appears promising. There are, however, certain drawbacks that deserve further attention for RNA-seq to become more efficient. Here, we discuss the opportunities of working with non-model organisms, the proteomic methods that have been used until now, and the dramatic improvements proffered by proteogenomics. These put the distinction between model and non-model organisms in great danger, at least in terms of proteomics!

Biological significance: Model organisms have been crucial for in-depth analysis of cellular and molecular processes of life. Focusing the efforts of thousands of researchers on the Escherichia coli bacterium, Saccharomyces cerevisiae yeast, Arabidopsis thaliana plant, Danio rerio fish and other models for which genetic manipulation was possible was certainly worthwhile in terms of fundamental and invaluable biological insights. Until recently, proteomics of non-model organisms was limited to tedious, homology-based techniques, but today draft genomes or RNA-seq data can be straightforwardly obtained using next-generation sequencers, allowing the establishment of a draft protein database for any organism. Thus, proteogenomics opens new perspectives for molecular studies of non-model organisms, although they are still difficult experimental organisms. This article is part of a Special Issue entitled: Proteomics of non-model organisms.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Review
Authors
Armengaud J, Trapp J, Pible O, Geffard O, Chaumot A, Hartmann EM
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference