Reference: Rosandić M, et al. (2013) Fundamental role of start/stop regulators in whole DNA and new trinucleotide classification. Gene 531(2):184-90

Reference Help

Abstract


The origin and logic of genetic code are two of greatest mysteries of life sciences. Analyzing DNA sequences we showed that the start/stop trinucleotides have broader importance than just marking start and stop of exons in coding DNA. On this basis, here we introduced new classification of trinucleotides and showed that all A+T rich trinucleotides consisting of three different nucleotides arise from start-ATG, stop-TGA and stop-TAG using their complement, reverse complement and reverse transformations. Due to the same transformations during generations of crossing-over they can switch from one form to the other. By direct process the start-ATG and stop-TAG can irreversibly transform into stop-TAA. By transformation into A+T rich trinucleotides and 16/32 C+G rich they can lose the start/stop function and take the role of a sense codon in reversible way. The remaining 16 C+G trinucleotides cannot directly transform into start/stop trinucleotides and thus remain a firm skeleton for structuring the C+G rich DNA. We showed that start/stops strongly enrich the A+T rich noncoding DNA through frequently extended forms. From the evolutionary viewpoint the start/stops are chief creators of prevailing A+T rich noncoding DNA, and of more stable coding DNA. We propose that start/stops have basic role as "seeds" in trinucleotide evolution of noncoding and coding sequences and lead to asymmetry between A+T and C+G rich DNA. By dynamical transformations during evolution they enabled pronounced phylogenetic broadness, keeping the regulator function.

Reference Type
Journal Article
Authors
Rosandić M, Paar V, Glunčić M
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference