Reference: Lachowiec J, et al. (2013) The protein chaperone HSP90 can facilitate the divergence of gene duplicates. Genetics 193(4):1269-77

Reference Help

Abstract


The heat-shock protein 90 (HSP90) acts as a chaperone by ensuring proper maturation and folding of its client proteins. The HSP90 capacitor hypothesis holds that interactions with HSP90 allow proteins to accumulate mutations while maintaining function. Following this logic, HSP90 clients would be predicted to show relaxed selection compared with nonclients. In this study, we identify a new HSP90 client in the plant steroid hormone pathway: the transcription factor BES1. Its closest paralog, BZR1, is not an HSP90 client. This difference in HSP90 client status in two highly similar proteins enabled a direct test of the capacitor hypothesis. We find that BES1 shows relaxed selection compared to BZR1, hallmarks of neo- and subfunctionalization, and dynamic HSP90 client status across independent evolutionary paths. These results suggested that HSP90's influence on gene evolution may be detectable if we compare gene duplicates because duplicates share most other properties influencing evolutionary rate that might otherwise conceal the chaperone's effect. We test this hypothesis using systematically identified HSP90 clients in yeast and observe a significant trend of HSP90 clients evolving faster than their nonclient paralogs. This trend was not detected when yeast clients and nonclients were compared without considering paralog status. Our data provide evidence that HSP90 influences selection on genes encoding its clients and facilitates divergence between gene duplicates.

Reference Type
Journal Article | Research Support, N.I.H., Extramural | Research Support, U.S. Gov't, Non-P.H.S.
Authors
Lachowiec J, Lemus T, Thomas JH, Murphy PJ, Nemhauser JL, Queitsch C
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference