Reference: Lester RL, et al. (2013) Iron, glucose and intrinsic factors alter sphingolipid composition as yeast cells enter stationary phase. Biochim Biophys Acta 1831(4):726-36

Reference Help

Abstract


Survival of Saccharomyces cerevisiae cells, like most microorganisms, requires switching from a rapidly dividing to a non-dividing or stationary state. To further understand how cells navigate this switch, we examined sphingolipids since they are key structural elements of membranes and also regulate signaling pathways vital for survival. During and after the switch to a non-dividing state there is a large increase in total free and sphingolipid-bound long chain-bases and an even larger increase in free and bound C20-long-chain bases, which are nearly undetectable in dividing cells. These changes are due to intrinsic factors including Orm1 and Orm2, ceramide synthase, Lcb4 kinase and the Tsc3 subunit of serine palmitoyltransferase as well as extrinsic factors including glucose and iron. Lowering the concentration of glucose, a form of calorie restriction, decreases the level of LCBs, which is consistent with the idea that reducing the level of some sphingolipids enhances lifespan. In contrast, iron deprivation increases LCB levels and decreases long term survival; however, these phenomena may not be related because iron deprivation disrupts many metabolic pathways. The correlation between increased LCBs and shorter lifespan is unsupported at this time. The physiological rise in LCBs that we observe may serve to modulate nutrient transporters and possibly other membrane phenomena that contribute to enhanced stress resistance and survival in stationary phase.

Reference Type
Journal Article | Research Support, N.I.H., Extramural
Authors
Lester RL, Withers BR, Schultz MA, Dickson RC
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference