Reference: Hu LL, et al. (2012) Using protein-protein interaction network information to predict the subcellular locations of proteins in budding yeast. Protein Pept Lett 19(6):644-51

Reference Help

Abstract


The information of protein subcellular localization is vitally important for in-depth understanding the intricate pathways that regulate biological processes at the cellular level. With the rapidly increasing number of newly found protein sequence in the Post-Genomic Age, many automated methods have been developed attempting to help annotate their subcellular locations in a timely manner. However, very few of them were developed using the protein-protein interaction (PPI) network information. In this paper, we have introduced a new concept called "tethering potential" by which the PPI information can be effectively fused into the formulation for protein samples. Based on such a network frame, a new predictor called Yeast-PLoc has been developed for identifying budding yeast proteins among their 19 subcellular location sites. Meanwhile, a purely sequence-based approach, called the "hybrid-property" method, is integrated into Yeast-PLoc as a fall-back to deal with those proteins without sufficient PPI information. The overall success rate by the jackknife test on the 4,683 yeast proteins in the training dataset was 70.25%. Furthermore, it was shown that the success rate by Yeast- PLoc on an independent dataset was remarkably higher than those by some other existing predictors, indicating that the current approach by incorporating the PPI information is quite promising. As a user-friendly web-server, Yeast-PLoc is freely accessible at http://yeastloc.biosino.org/.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Hu LL, Feng KY, Cai YD, Chou KC
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference