Reference: Jędrzejczak R, et al. (2012) Inactivation of glucosamine-6-phosphate synthase by N3-oxoacyl derivatives of L-2,3-diaminopropanoic acid. Chembiochem 13(1):85-96

Reference Help

Abstract


N(3)-Oxoacyl derivatives of L-2,3-diaminopropanoic acid 1-4, containing either an epoxide group or a conjugated double bond system, inactivate Saccharomyces cerevisiae glucosamine-6-phosphate (GlcN-6-P) synthase in a time- and concentration dependent manner. The results of kinetics studies on inactivation suggested a biphasic course, with formation of the enzyme-ligand complex preceding irreversible modification of the enzyme. The examined compounds differed markedly in their affinity to the enzyme active site. Inhibitors containing a phenyl ketone moiety bound much more strongly than their methyl ketone counterparts. The molecular mechanism of enzyme inactivation by phenyl ketone compounds 1 and 3 was elucidated by using a stepwise approach with 2D NMR, MS and UV-visible spectroscopy. A substituted thiazine derivative was identified as the final product of a model reaction between an epoxide compound, 1, and L-cysteine ethyl ester (CEE); and the respective cyclic product, found as a result of reaction between 1 and CGIF tetrapeptide, was identical to the N-terminal fragment of GlcN-6-P synthase. On the other hand, the reaction of a double-bond-containing compound, 3, with CEE, CGIF and GlcN-6-P synthase led to the formation of a C-S bond, without any further conversion or rearrangement. Molecular mechanisms of the reactions studied are proposed.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Jędrzejczak R, Wojciechowski M, Andruszkiewicz R, Sowiński P, Kot-Wasik A, Milewski S
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference