Reference: Ma SM, et al. (2011) Optimization of a heterologous mevalonate pathway through the use of variant HMG-CoA reductases. Metab Eng 13(5):588-97

Reference Help

Abstract


Expression of foreign pathways often results in suboptimal performance due to unintended factors such as introduction of toxic metabolites, cofactor imbalances or poor expression of pathway components. In this study we report a 120% improvement in the production of the isoprenoid-derived sesquiterpene, amorphadiene, produced by an engineered strain of Escherichia coli developed to express the native seven-gene mevalonate pathway from Saccharomyces cerevisiae (Martin et al. 2003). This substantial improvement was made by varying only a single component of the pathway (HMG-CoA reductase) and subsequent host optimization to improve cofactor availability. We characterized and tested five variant HMG-CoA reductases obtained from publicly available genome databases with differing kinetic properties and cofactor requirements. The results of our in vitro and in vivo analyses of these enzymes implicate substrate inhibition of mevalonate kinase as an important factor in optimization of the engineered mevalonate pathway. Consequently, the NADH-dependent HMG-CoA reductase from Delftia acidovorans, which appeared to have the optimal kinetic parameters to balance HMG-CoA levels below the cellular toxicity threshold of E. coli and those of mevalonate below inhibitory concentrations for mevalonate kinase, was identified as the best producer for amorphadiene (54% improvement over the native pathway enzyme, resulting in 2.5mM or 520 mg/L of amorphadiene after 48 h). We further enhanced performance of the strain bearing the D. acidovorans HMG-CoA reductase by increasing the intracellular levels of its preferred cofactor (NADH) using a NAD(+)-dependent formate dehydrogenase from Candida boidinii, along with formate supplementation. This resulted in an overall improvement of the system by 120% resulting in 3.5mM or 700 mg/L amorphadiene after 48 h of fermentation. This comprehensive study incorporated analysis of several key parameters for metabolic design such as in vitro and in vivo kinetic performance of variant enzymes, intracellular levels of protein expression, in-pathway substrate inhibition and cofactor management to enable the observed improvements. These metrics may be applied to a broad range of heterologous pathways for improving the production of biologically derived compounds.

Reference Type
Journal Article | Research Support, U.S. Gov't, Non-P.H.S.
Authors
Ma SM, Garcia DE, Redding-Johanson AM, Friedland GD, Chan R, Batth TS, Haliburton JR, Chivian D, Keasling JD, Petzold CJ, ... Show all
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference