Reference: Phelps A, et al. (1996) Mitochondrial phosphate transport protein. replacements of glutamic, aspartic, and histidine residues affect transport and protein conformation and point to a coupled proton transport path. Biochemistry 35(33):10757-62

Reference Help

Abstract


The homodimeric mitochondrial phosphate transport protein (PTP), which has six transmembrane helices per subunit, catalyzes inorganic phosphate transport in an electroneutral and pH gradient-dependent manner across the inner membrane. We have replaced the Glu, Asp, and His residues of the yeast PTP to assess their role in the transport mechanism. Mutants with physiologically relevant transport activity were identified by their ability to rescue the PTP null mutant yeast from glycerol medium. Five residues appear critical for transport: His-32 in helix A, Glu-126 and -137 in helix C, and Asp-39 and -236 at the matrix ends of helices A and E. These mutant PTPs are expressed at near normal levels in yeast. This yeast PTP and the mutants were expressed in Escherichia coli as inclusion bodies, solubilized, purified, and reconstituted. Their transport activities correlate well with the physiological assays. None of the transport inactivating mutations appear to be due to major protein conformation changes as assayed by the efficiency of PTP incorporation into liposomes. Only the Glu95Gln (cytosolic helices B and C-connecting segment), Glu163Gln and Glu164Gln (matrix helices C and D-connecting segment), and Glu126Asp (helix C) show a near 70% decrease in liposome incorporation efficiency. In addition, mutations at either end of helix D increase phosphate transport 2-fold. We would like to suggest that Glu-126, His-32, and Glu-137 (similar to Asp-96, Lys-216, and Asp-85 of bacteriorhodopsin) form a proton cotransport pathway that is coupled in an as yet undefined manner (possibly via His-32) to a phosphate transport pathway, which may include helix D.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, P.H.S.
Authors
Phelps A, Briggs C, Mincone L, Wohlrab H
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference