Reference: Schymkowitz JW, et al. (2000) Sequence conservation provides the best prediction of the role of proline residues in p13suc1. J Mol Biol 301(1):199-204

Reference Help

Abstract


The unique nature of the proline side-chain imposes severe constraints on the polypeptide backbone, and thus it seems likely that it plays a special structural or functional role in the architecture of proteins. We have investigated the role of proline residues in suc1, a member of the cyclin-dependent kinase (cks) family of proteins, whose known function is to bind to and regulate the activity of the major mitotic cdk. The effect on stability of mutation to alanine of all but two of the eight proline residues is correlated with their conservation within the family. The remaining two proline residues are located in the hinge loop between two beta-strands that mediates a domain-swapping process involving exchange of a beta-strand between two monomers to form a dimer pair. Mutation of these proline residues to alanine stabilises the protein. cdk binding is unaffected by these mutations, but dimerisation is altered. We propose, therefore, that the double-proline motif is conserved for the purpose of domain swapping, which suggests that this phenomenon plays a role in the function of cks proteins. Thus, the conservation of the proline residues is a good indicator of their roles in suc1, either in the stabilisation of the native state or in performing functions that are as yet unknown. In addition, the strain resulting from two of the proline residues was relieved successfully by mutation of the preceeding residue to glycine, suggesting a general method for designing more stable proteins.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Schymkowitz JW, Rousseau F, Itzhaki LS
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference