Reference: Gasparutto D, et al. (2000) Repair and coding properties of 5-hydroxy-5-methylhydantoin nucleosides inserted into DNA oligomers. Chem Res Toxicol 13(7):575-84

Reference Help

Abstract


1-(2-Deoxy-beta-D-erythro-pentofuranosyl)-5-hydroxy-5-methylhydantoin (5-OH-5-Me-dHyd) (3) has been shown to be a major oxidation product of thymidine formed upon exposure of DNA to (*)OH-radical and excited photosensitizers. To investigate the biological and structural significance of the 5-OH-5-Me-dHyd residue to DNA, the latter modified 2'-deoxyribonucleoside was chemically prepared and then site-specifically incorporated into oligodeoxyribonucleotides. This was efficiently achieved using the phosphoramidite approach that involved mild deprotection conditions. The purity and the integrity of the modified synthetic DNA fragments were checked using different complementary techniques such as HPLC and polyacrylamide gel electrophoresis, together with electrospray ionization and MALDI-TOF mass spectrometry. The piperidine test applied to 5-OH-5-Me-dHyd containing oligonucleotides showed a weak instability of hydantoin nucleoside inserted into the oligonucleotide chain. Several enzymatic experiments aimed at determining the biochemical features of such a DNA lesion were carried out. Thus, processing of 5-OH-5-Me-dHyd by nuclease P(1), snake venom phosphodiesterase, and calf spleen phosphodiesterase was investigated. The specificity and the mechanism of excision of the lesion by several bacterial and yeast DNA N-glycosylases, namely, endonuclease III (endo III), endonuclease VIII (endo VIII), formamidopyrimidine DNA N-glycosylase (Fpg), Ntg1 protein (Ntg1), Ntg2 protein (Ntg2), and Ogg1 protein (yOgg1), were also determined. These repair studies clearly showed that all these enzymes, with the exception of the yOgg1 protein, are able to recognize and remove 5-hydroxy-5-methylhydantoin from the double-stranded DNA fragment. Finally, a 22-mer DNA oligomer bearing a 5-OH-5-Me-dHyd residue was used as a template to study the in vitro nucleotide incorporation opposite the damage by the Klenow fragment of Escherichia coli polymerase I, Taq DNA polymerase, and DNA polymerase beta. Thus, it may be concluded that the oxidized thymine residue is a strongly blocking lesion for the three studied DNA polymerases.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Gasparutto D, Ait-Abbas M, Jaquinod M, Boiteux S, Cadet J
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference