Reference: Bernstein J, et al. (2010) Unique properties of the Mtr4p-poly(A) complex suggest a role in substrate targeting. Biochemistry 49(49):10357-70

Reference Help

Abstract


Mtr4p is a DEVH-box helicase required for 3'-end processing and degradation of various nuclear RNA substrates. In particular, Mtr4p is essential for the creation of 5.8S rRNA, U4 snRNA, and some snoRNAs and for the degradation of cryptic unstable transcripts (CUTs), aberrant mRNAs, and aberrant tRNAs. Many instances of 3'-end processing require limited polyadenylation to proceed. While polyadenylation can signal degradation in species from bacteria to humans, the mechanism whereby polyadenylated substrates are delivered to the degradation machinery is unknown. Our previous work has shown that Mtr4p preferentially binds poly(A) RNA. We suspect that this preference aids in targeting polyadenylated RNAs to the exosome. In these studies, we have investigated the mechanism underlying the preference of Mtr4p for poly(A) substrates as a means of understanding how Mtr4p might facilitate targeting. Our analysis has revealed that recognition of poly(A) substrates involves sequence-specific changes in the architecture of Mtr4p-RNA complexes. Furthermore, these differences significantly affect downstream activities. In particular, homopolymeric stretches like poly(A) ineffectively stimulate the ATPase activity of Mtr4p and suppress the rate of dissociation of the Mtr4p-RNA complex. These findings indicate that the Mtr4p-poly(A) complex is unique and ideally suited for targeting key substrates to the exosome.

Reference Type
Comparative Study | Journal Article | Research Support, N.I.H., Extramural | Research Support, Non-U.S. Gov't
Authors
Bernstein J, Ballin JD, Patterson DN, Wilson GM, Toth EA
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference