Reference: Noël JF and Wellinger RJ (2011) Abrupt telomere losses and reduced end-resection can explain accelerated senescence of Smc5/6 mutants lacking telomerase. DNA Repair (Amst) 10(3):271-82

Reference Help

Abstract


The highly conserved Structural Maintenance of Chromosome (SMC) proteins are crucial for the formation of three essential complexes involved in high fidelity chromosome transmission during cell division. Recently, the Smc5/6 complex has been reported to be important for telomere maintenance in yeast and also in cancerous human ALT cells, where it could function in a homologous recombination-based (HR) telomere maintenance pathway. Here, we investigate the possible roles of the budding yeast Smc5/6 complex in maintaining appropriate chromosome end-structures allowing cell survival in absence of telomerase. The results show that cells harbouring mutant alleles of genes encoding Smc5/6-complex proteins rapidly stop growing after telomerase loss. Furthermore, this telomerase-induced growth arrest is much more pronounced as compared to cultures with a functional Smc5/6-complex. Bulk telomere sequence loss is not increased in the mutant cells and the evidence suggests that Smc5/6 slows senescence through a partially HR-independent pathway. We propose that in yeast, the Smc5/6-complex is required for efficient and timely termination of DNA replication and repair at telomeres to avoid stochastic telomere loss during cell division. Consistent with this hypothesis, sequencing of telomeres from telomerase-positive smc5/6 mutant cells revealed a higher frequency of telomere breakage events. Finally, the results also show that on dysfunctional telomeres, the generation of 3'-single stranded DNA is impaired, suggesting that the complex may also participate in the formation of single-stranded overhangs which are thought to be the substrates for telomere repeat replenishment in the absence of telomerase.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Noël JF, Wellinger RJ
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference