Reference: Muliukin AL, et al. (2002) [Comparative study of the elemental composition of vegetative and dormant microbial cells]. Mikrobiologiia 71(1):37-48

Reference Help

Abstract


X-ray microanalysis showed that vegetative cells, viable resting forms, and nonviable forms (micromummies) of the bacteria Bacillus cereus and Micrococcus luteus and the yeast Saccharomyces cerevisiae differ in the contents of bioelements S, P, Ca, and K and the Ca/K and P/S ratios. Viable resting forms (cystlike refractory cells and bacillar endospores) had more calcium and less phosphorus and potassium than vegetative cells, the difference being higher for bacilli than for micrococci and yeasts. The distinctive feature of all viable resting microbial forms was their low P/S ratios and high Ca/K ratios. The differences revealed in the cellular content and ratios of bioelements probably reflect changes in ionic homeostasis accompanying the transition of vegetative microbial cells to the dormant state. Relevant potassium parameters indicate that the membranes of viable resting forms retain their barrier function. At the same time, the nonviable forms, even morphologically intact, of B. cereus and S. cerevisiae exhibited an anomalously low content of potassium, while those of M. luteus had an anomalously high content of this element. This suggests that the cellular membranes of micromummies lose their barrier function, which results in a free diffusion of potassium ions across the membranes. The possibility of using the elemental composition parameters for quick analysis of the physiological state of microorganisms in natural environments is discussed.

Reference Type
Comparative Study | Journal Article
Authors
Muliukin AL, Sorokin VV, Loĭko NG, Suzina NE, Duda VI, Vorob'eva EA, El'-Registan GI
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference