Reference: Bekatorou A, et al. (2002) Low-temperature brewing using yeast immobilized on dried figs. J Agric Food Chem 50(25):7249-57

Reference Help

Abstract


Dried figs, following exhaustive extraction of their residual sugars with water, were used for immobilization of Saccharomyces cerevisiae AXAZ-1. The immobilized biocatalyst was used in repeated batch fermentations of glucose at 30 degrees C, where significant reduction of the fermentation time was observed, falling from 65 h in the first batch to 7 h after the sixth batch. Repeated fermentations of wort at room and low temperatures resulted in fermentation times that fell from 26 to 20 h and from 27 to 24 days at 18 and 3 degrees C, respectively. Ethanol and beer productivities were high, showing suitability of the biocatalyst for low-temperature brewing. Diacetyl concentrations were low (0.3-0.5 mg/L), and polyphenols were lower than in commercial products and decreased as the fermentation temperature was decreased (126-50 mg/L). Ethyl acetate concentrations increased from 53 to 88 mg/L as the temperature was decreased, while the concentration of amyl alcohols at 3 degrees C (58 mg/L) was lower than half of that at 18 degrees C (125 mg/L). The beers produced at the end of the main fermentation had a fine clarity and a special fruity figlike aroma and taste, distinct from commercial products and more intense than beers produced by cells immobilized on other food-grade supports (gluten pellets or delignified cellulosic materials). GC-MS analysis did not show significant differences in the qualitative composition of the aroma compounds of the beers produced by immobilized and free cells.

Reference Type
Journal Article
Authors
Bekatorou A, Sarellas A, Ternan NG, Mallouchos A, Komaitis M, Koutinas AA, Kanellaki M
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference