Reference: Ault AD and Broach JR (2006) Creation of GPCR-based chemical sensors by directed evolution in yeast. Protein Eng Des Sel 19(1):1-8

Reference Help

Abstract


G protein-coupled receptors (GPCRs) form a class of biological chemical sensors with an enormous diversity in ligand binding and sensitivity. To explore structural aspects of ligand recognition, we subjected the human UDP-glucose receptor (P2Y14) functionally expressed in the yeast Saccharomyces to directed evolution. We sought to generate new receptor subtypes with ligand-binding properties that would be useful in the development of practical biosensors. Mutagenesis of the entire UDP-glucose receptor gene yielded receptors with increased activity but similar ligand specificities, while random mutagenesis of residues in the immediate vicinity of the ligand-binding pocket yielded mutants with altered ligand specificity. By first sensitizing the P2Y14 receptor and then redirecting ligand specificity, we were able to create mutant receptors suitable for a simple biosensor. Our results demonstrate the feasibility of altering receptor ligand-binding properties via a directed evolution strategy, using standard yeast genetic techniques. The novel receptor mutants can be used to detect chemical ligands in complex mixtures and to discriminate among chemically or stereochemically related compounds. Specifically, we demonstrate how engineered receptors can be applied in a pairwise manner to differentiate among several chemical analytes that would be indistinguishable with a single receptor. These experiments demonstrate the feasibility of a combinatorial approach to detector design based on the principles of olfaction.

Reference Type
Journal Article | Research Support, N.I.H., Extramural
Authors
Ault AD, Broach JR
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference