Reference: Grassi L, et al. (2010) Identity and divergence of protein domain architectures after the yeast whole-genome duplication event. Mol Biosyst 6(11):2305-15

Reference Help

Abstract


Gene duplication is a key mechanism in evolution for generating new functionality, and it is known to have produced a large proportion of genes. Duplication mechanisms include small-scale, or "local", events such as unequal crossing over and retroposition, together with global events, such as chromosomal or whole genome duplication (WGD). In particular, different studies confirmed that the yeast S. cerevisiae arose from a 100-150 million-year old whole-genome duplication. Detection and study of duplications are usually based on sequence alignment, synteny and phylogenetic techniques, but protein domains are also useful in assessing protein homology. We develop a simple and computationally efficient protein domain architecture comparison method based on the domain assignments available from public databases. We test the accuracy and the reliability of this method in detecting instances of gene duplication in the yeast S. cerevisiae. In particular, we analyze the evolution of WGD and non-WGD paralogs from the domain viewpoint, in comparison with a more standard functional analysis of the genes. A large number of domains is shared by genes that underwent local and global duplications, indicating the existence of a common set of "duplicable" domains. On the other hand, WGD and non-WGD paralogs tend to have different functions. We find evidence that this comes from functional migration within similar domain superfamilies, but also from the existence of small sets of WGD and non-WGD specific domain superfamilies with largely different functions. This observation gives a novel perspective on the finding that WGD paralogs tend to be functionally different from small-scale paralogs. WGD and non-WGD superfamilies carry distinct functions. Finally, the Gene Ontology similarity of paralogs tends to decrease with duplication age, while this tendency is weaker or not observable by the comparison of the domain architectures of paralogs. This suggests that the set of domains composing a protein tends to be maintained, while its function, cellular process or localization diversifies. Overall, the gathered evidence gives a different viewpoint on the biological specificity of the WGD and at the same time points out the validity of domain architecture comparison as a tool for detecting homology.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Grassi L, Fusco D, Sellerio A, Corà D, Bassetti B, Caselle M, Lagomarsino MC
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference