Reference: You T, et al. (2010) A quantitative model for mRNA translation in Saccharomyces cerevisiae. Yeast 27(10):785-800

Reference Help

Abstract


Messenger RNA (mRNA) translation is an essential step in eukaryotic gene expression that contributes to the regulation of this process. We describe a deterministic model based on ordinary differential equations that describe mRNA translation in Saccharomyces cerevisiae. This model, which was parameterized using published data, was developed to examine the kinetic behaviour of translation initiation factors in response to amino acid availability. The model predicts that the abundance of the eIF1-eIF3-eIF5 complex increases under amino acid starvation conditions, suggesting a possible auxiliary role for these factors in modulating translation initiation in addition to the known mechanisms involving eIF2. Our analyses of the robustness of the mRNA translation model suggest that individual cells within a randomly generated population are sensitive to external perturbations (such as changes in amino acid availability) through Gcn2 signalling. However, the model predicts that individual cells exhibit robustness against internal perturbations (such as changes in the abundance of translation initiation factors and kinetic parameters). Gcn2 appears to enhance this robustness within the system. These findings suggest a trade-off between the robustness and performance of this biological network. The model also predicts that individual cells exhibit considerable heterogeneity with respect to their absolute translation rates, due to random internal perturbations. Therefore, averaging the kinetic behaviour of cell populations probably obscures the dynamic robustness of individual cells. This highlights the importance of single-cell measurements for evaluating network properties.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
You T, Coghill GM, Brown AJ
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference