Reference: Müller M, et al. (2010) Highly efficient and stereoselective biosynthesis of (2S,5S)-hexanediol with a dehydrogenase from Saccharomyces cerevisiae. Org Biomol Chem 8(7):1540-50

Reference Help

Abstract


The enantiopure (2S,5S)-hexanediol serves as a versatile building block for the production of various fine chemicals and pharmaceuticals. For industrial and commercial scale, the diol is currently obtained through bakers' yeast-mediated reduction of 2,5-hexanedione. However, this process suffers from its insufficient space-time yield of about 4 g L(-1) d(-1) (2S,5S)-hexanediol. Thus, a new synthesis route is required that allows for higher volumetric productivity. For this reason, the enzyme which is responsible for 2,5-hexanedione reduction in bakers' yeast was identified after purification to homogeneity and subsequent MALDI-TOF mass spectroscopy analysis. As a result, the dehydrogenase Gre2p was shown to be responsible for the majority of the diketone reduction, by comparison to a Gre2p deletion strain lacking activity towards 2,5-hexanedione. Bioreduction using the recombinant enzyme afforded the (2S,5S)-hexanediol with >99% conversion yield and in >99.9% de and ee. Moreover, the diol was obtained with an unsurpassed high volumetric productivity of 70 g L(-1) d(-1) (2S,5S)-hexanediol. Michaelis-Menten kinetic studies have shown that Gre2p is capable of catalysing both the reduction of 2,5-hexanedione as well as the oxidation of (2S,5S)-hexanediol, but the catalytic efficiency of the reduction is three times higher. Furthermore, the enzyme's ability to reduce other keto-compounds, including further diketones, was studied, revealing that the application can be extended to alpha-diketones and aldehydes.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Müller M, Katzberg M, Bertau M, Hummel W
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference