Reference: Zhou L, et al. (2009) Chromatin regulation and gene centrality are essential for controlling fitness pleiotropy in yeast. PLoS One 4(11):e8086

Reference Help

Abstract


Background: There are a wide range of phenotypes that are due to loss-of-function or null mutations. Previously, the functions of gene products that distinguish essential from nonessential genes were characterized. However, the functions of products of non-essential genes that contribute to fitness remain minimally understood.

Principal findings: Using data from Saccharomyces cerevisiae, we investigated several gene characteristics, which we are able to measure, that are significantly associated with a gene's fitness pleiotropy. Fitness pleiotropy is a measurement of the gene's importance to fitness. These characteristics include: 1) whether the gene's product functions in chromatin regulation, 2) whether the regulation of the gene is influenced by chromatin state, measured by chromatin regulation effect (CRE), 3) whether the gene's product functions as a transcription factor (TF) and the number of genes a TF regulates, 4) whether the gene contains TATA-box, and 5) whether the gene's product is central in a protein interaction network. Partial correlation analysis was used to study how these characteristics interact to influence fitness pleiotropy. We show that all five characteristics that were measured are statistically significantly associated with fitness pleiotropy. However, fitness pleiotropy is not associated with the presence of TATA-box when CRE is controlled. In particular, two characteristics: 1) whether the regulation of a gene is more likely to be influenced by chromatin state, and 2) whether the gene product is central in a protein interaction network measured by the number of protein interactions were found to play the most important roles affecting a gene's fitness pleiotropy.

Conclusions: These findings highlight the significance of both epigenetic gene regulation and protein interaction networks in influencing the fitness pleiotropy.

Reference Type
Journal Article | Research Support, N.I.H., Extramural | Research Support, Non-U.S. Gov't
Authors
Zhou L, Ma X, Arbeitman MN, Sun F
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference