Reference: Palhano FL, et al. (2009) A fluorescent mutant of the NM domain of the yeast prion Sup35 provides insight into fibril formation and stability. Biochemistry 48(29):6811-23

Reference Help

Abstract


The Sup35 protein of Saccharomyces cerevisiae forms a prion that generates the [PSI(+)] phenotype. Its NM region governs prion status, forming self-seeding amyloid fibers in vivo and in vitro. A tryptophan mutant of Sup35 (NM(F117W)) was used to probe its aggregation. Four indicators of aggregation, Trp 117 maximum emission, Trp polarization, thio-T binding, and light scattering increase, revealed faster aggregation at 4 degrees C than at 25 degrees C, and all indicators changed in a concerted fashion at the former temperature. Curiously, at 25 degrees C the changes were not synchronized; the first two indicators, which reflect nucleation, changed more quickly than the last two, which reflect fibril formation. These results suggest that nucleation is insensitive to temperature, whereas fibril extension is temperature dependent. As expected, aggregation is accelerated when a small fraction (5%) of the nuclei produced at 4 or 25 degrees C are added to a suspension containing the soluble NM domain, although these nuclei do not seem to propagate any structural information to the growing fibrils. Fibrils grown at 4 degrees C were less stable in GdmCl than those grown at higher temperature. However, they were both resistant to high pressure; in fact, both sets of fibrils responded to high pressure by adopting an altered conformation with a higher capacity for thio-T binding. From these data, we calculated the change in volume and free energy associated with this conformational change. AFM revealed that the fibrils grown at 4 degrees C were statistically smaller than those grown at 25 degrees C. In conclusion, the introduction of Trp 117 allowed us to more carefully dissect the effects of temperature on the aggregation of the Sup35 NM domain.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Palhano FL, Rocha CB, Bernardino A, Weissmuller G, Masuda CA, Montero-Lomelí M, Gomes AM, Chien P, Fernandes PM, Foguel D
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference