Reference: Hawkins J, et al. (2009) Assessing phylogenetic motif models for predicting transcription factor binding sites. Bioinformatics 25(12):i339-47

Reference Help

Abstract


Motivation: A variety of algorithms have been developed to predict transcription factor binding sites (TFBSs) within the genome by exploiting the evolutionary information implicit in multiple alignments of the genomes of related species. One such approach uses an extension of the standard position-specific motif model that incorporates phylogenetic information via a phylogenetic tree and a model of evolution. However, these phylogenetic motif models (PMMs) have never been rigorously benchmarked in order to determine whether they lead to better prediction of TFBSs than obtained using simple position weight matrix scanning.

Results: We evaluate three PMM-based prediction algorithms, each of which uses a different treatment of gapped alignments, and we compare their prediction accuracy with that of a non-phylogenetic motif scanning approach. Surprisingly, all of these algorithms appear to be inferior to simple motif scanning, when accuracy is measured using a gold standard of validated yeast TFBSs. However, the PMM scanners perform much better than simple motif scanning when we abandon the gold standard and consider the number of statistically significant sites predicted, using column-shuffled 'random' motifs to measure significance. These results suggest that the common practice of measuring the accuracy of binding site predictors using collections of known sites may be dangerously misleading since such collections may be missing 'weak' sites, which are exactly the type of sites needed to discriminate among predictors. We then extend our previous theoretical model of the statistical power of PMM-based prediction algorithms to allow for loss of binding sites during evolution, and show that it gives a more accurate upper bound on scanner accuracy. Finally, utilizing our theoretical model, we introduce a new method for predicting the number of real binding sites in a genome. The results suggest that the number of true sites for a yeast TF is in general several times greater than the number of known sites listed in the Saccharomyces cerevisiae Database (SCPD). Among the three scanning algorithms that we test, the MONKEY algorithm has the highest accuracy for predicting yeast TFBSs.

Reference Type
Journal Article | Research Support, N.I.H., Extramural | Research Support, Non-U.S. Gov't
Authors
Hawkins J, Grant C, Noble WS, Bailey TL
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference