Reference: Fujii M, et al. (2009) [FeFe]-hydrogenase-like gene is involved in the regulation of sensitivity to oxygen in yeast and nematode. Genes Cells 14(4):457-68

Reference Help

Abstract


Oxygen is essential for the life of aerobic organisms, but reactive oxygen species (ROS) derived from oxygen can be a threat for it. Many genes are involved in generation of ROS, but not much attention has been focused on the reactions from which ROS are generated. We therefore screened for mutants that showed an increased sensitivity to oxidative stress in the nematode Caenorhabditis elegans, and isolated a novel mutant, oxy-4(qa5001). This mutant showed an increased sensitivity to a high concentration of oxygen, and decreased longevity at 20 degrees C but not at 26 degrees C. The genetic analysis has revealed that oxy-4 had a causative mutation in an [FeFe]-hydrogenase-like gene (Y54H5A.4). In the yeast Saccharomyces cerevisiae, a deletion of NAR1, a possible homologue of oxy-4, also caused a similar increased sensitivity to oxygen. [FeFe]-hydrogenases are enzymes that catalyze both the formation and the splitting of molecular hydrogen, and function in anaerobic respiration in anaerobes. In contrast, [FeFe]-hydrogenase-like genes identified in aerobic eukaryotes do not generate hydrogen, and its functional roles are less understood. Our results suggested that [FeFe]-hydrogenase-like genes were involved in the regulation of sensitivity to oxygen in S. cerevisiae and C. elegans.

Reference Type
Journal Article | Research Support, N.I.H., Extramural | Research Support, Non-U.S. Gov't
Authors
Fujii M, Adachi N, Shikatani K, Ayusawa D
Primary Lit For
NAR1

Phenotype Annotations 1 entry for 1 gene


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

GenePhenotypeExperiment TypeMutant InformationStrain BackgroundChemicalDetails
NAR1oxidative stress resistance: decreased
classical geneticsrepressibleOther90% oxygen atmosphere diatomic oxygen
Showing 1 to 1 of 1 entries