Reference: Shi C, et al. (2009) In vitro characterization of ligand-induced oligomerization of the S. cerevisiae G-protein coupled receptor, Ste2p. Biochim Biophys Acta 1790(1):1-7

Reference Help

Abstract


Background: The S. cerevisiae alpha-factor receptor, Ste2p, is a G-protein coupled receptor that plays key roles in yeast signaling and mating. Oligomerization of Ste2p has previously been shown to be important for intracellular trafficking, receptor processing and endocytosis. However the role of ligand in receptor oligomerization remains enigmatic.

Methods: Using functional recombinant forms of purified Ste2p, atomic force microscopy, dynamic light scattering and chemical crosslinking are applied to investigate the role of ligand in Ste2p oligomerization.

Results: Atomic force microscopy images indicate a molecular height for recombinant Ste2p in the presence of alpha-factor nearly double that of Ste2p alone. This observation is supported by complementary dynamic light scattering measurements which indicate a ligand-induced increase in the polydispersity of the Ste2p hydrodynamic radius. Finally, chemical cross-linking of HEK293 plasma membranes presenting recombinant Ste2p indicates alpha-factor induced stabilization of the dimeric form and higher order oligomeric forms of the receptor upon SDS-PAGE analysis.

Conclusions: alpha-factor induces oligomerization of Ste2p in vitro and in membrane.

General significance: These results provide additional evidence of a possible role for ligand in mediation of Ste2p oligomerization in vivo.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Shi C, Paige MF, Maley J, Loewen MC
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference