Reference: Lopez A, et al. (2008) Chemical-genetic approaches for exploring the mode of action of natural products. Prog Drug Res 66:237, 239-71

Reference Help

Abstract


Determining the mode of action of bioactive compounds, including natural products, is a central problem in chemical biology. Because many genes are conserved from the yeast Saccharomyces cerevisiae to humans and a number of powerful genomics tools and methodologies have been developed for this model system, yeast is making a major contribution to the field of chemical genetics. The set of barcoded yeast deletion mutants, including the set of approximately 5000 viable haploid and homozygous diploid deletion mutants and the complete set of approximately 6000 heterozygous deletion mutants, containing the set of approximately 1000 essential genes, are proving highly informative for identifying chemical-genetic interactions and deciphering compound mode of action. Gene deletions that render cells hypersensitive to a specific drug identify pathways that buffer the cell against the toxic effects of the drug and thereby provide clues about both gene and compound function. Moreover, compounds that show similar chemical-genetic profiles often perturb similar target pathways. Gene dosage can be exploited to discover connections between compounds and their targets. For example, haploinsufficiency profiling of an antifungal compound, in which the set of approximately 6000 heterozygous diploid deletion mutants are scored for hypersensitivity to a compound, may identify the target directly. Creating deletion mutant collections in other fungal species, including the major human fungal pathogen Candida albicans, will expand our chemical genomics tool set, allowing us to screen for antifungal lead drugs directly. The yeast deletion mutant collection is also being exploited to map large-scale genetic interaction data obtained from genome-wide synthetic lethal screens and the integration of this data with chemical genetic data should provide a powerful system for linking compounds to their target pathway. Extensive application of chemical genetics in yeast has the potential to develop a small molecule inhibitor for the majority of all approximately 6000 yeast genes.

Reference Type
Journal Article | Research Support, N.I.H., Extramural | Research Support, Non-U.S. Gov't | Review
Authors
Lopez A, Parsons AB, Nislow C, Giaever G, Boone C
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference