Reference: Okochi N, et al. (2007) Design of a serine protease-like catalytic triad on an antibody light chain displayed on the yeast cell surface. Appl Microbiol Biotechnol 77(3):597-603

Reference Help

Abstract


Lc-WT, the wild-type light chain of antibody, and Lc-Triad, its double mutant with E1D and T27aS designing for the construction of catalytic triad within Asp1, Ser27a, and original His93 residues, were displayed on the cell surface of the protease-deficient yeast strain BJ2168. When each cell suspension was reacted with BODIPY FL casein and seven kinds of peptide-MCA substrates, respectively, a remarkable difference in hydrolytic activities toward Suc-GPLGP-MCA (succinyl-Gly-Pro-Leu-Gly-Pro-MCA), a substrate toward collagenase-like peptidase, was observed between the constructs: Lc-Triad-displaying cells showed higher catalytic activity than Lc-WT-displaying cells. The difference disappeared in the presence of the serine protease inhibitor diisopropylfluorophosphate, suggesting that the three amino acid residues, Ser27a, His93, and Asp1, functioned as a catalytic triad responsible for the proteolytic activity in a similar way to the anti-vasoactive intestinal peptide (VIP) antibody light chain. A serine protease-like catalytic triad (Ser, His, and Asp) is considered to be directly involved in the catalytic mechanism of the anti-VIP antibody light chain, which moderately catalyzes the hydrolysis of VIP. These results suggest the possibility of new approach for the creation of tailor-made proteases beyond limitations of the traditional immunization approach.

Reference Type
Journal Article
Authors
Okochi N, Kato-Murai M, Kadonosono T, Ueda M
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference